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1 Gyrotropic Media

This section presents deriving the permittivity tensor of a gyrotropic medium
in the ionsphere. Our ionosphere is always biased by a static magnetic field
due to the Earth’s magnetic field. But in this derivation, one assumes that
the ionosphere has a static magnetic field polarized in the z direction, namely
that B = ẑB0. Now, the equation of motion from the Lorentz force law for an
electron with q = −e, becomes

me
dv

dt
= −e(E + v ×B) (1.1)

Next, let us assume that the electric field is polarized in the xy plane. Also,
v = dr/dt, and in the frequency domain, the above becomes

meω
2x = e(Ex + jωB0y) (1.2)

meω
2y = e(Ey − jωB0x) (1.3)

The above equations cannot be solved easily for x and y in terms of the
electric field because they correspond to a two-by-two matrix system with cross
coupling between the unknowns x and y. But they can be simplified as follows.
We can multiply (1.3) by ±j and add it to (1.2) to get two decoupled equations:

meω
2(x+ jy) = e[(Ex + jEy) + ωB0(x+ jy)] (1.4)

meω
2(x− jy) = e[(Ex − jEy)− ωB0(x− jy)] (1.5)

Defining new variables such that

s± = x± jy (1.6)

E± = Ex ± jEy (1.7)

then (1.4) and (1.5) become

meω
2s± = e(E± ± ωB0s±) (1.8)

Thus, solving the above yields

s± =
e

meω2 ∓ eB0ω
E± = C±E± (1.9)

where

C± =
e

meω2 ∓ eB0ω
(1.10)

By this manipulation, the above equations (1.2) and (1.3) transform to new
equations where there is no cross coupling between s± and E±. The mathemat-
ical parlance for this is the diagnolization of a matrix equation. Thus, the new
equation can be solved easily.
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Next, one can define Px = −Nex, Py = −Ney, and that P± = Px ± jPy =
−Nes±, then it can be shown that

P± = ε0χ±E± (1.11)

The expression for χ± can be derived, or

χ± = −NeC±
ε0

= −Ne
ε0

e

meω2 ∓ eBoω
= − ωp

2

ω2 ∓ Ωω
(1.12)

where Ω and ωp are the cyclotron frequency1 and plasma frequency, respectively.

Ω =
eB0

me
, ωp

2 =
Ne2

meε0
(1.13)

At the cyclotron frequency, a solution exists to the equation of motion (1.1)
without a forcing function, which in this case is the electric field. Thus, at this
frequency, the solution blows up with a forcing function, E± not being zero.
This is like what happens to an LC tank circuit at resonance.

Now, one can rewrite (1.11) in terms of the original variables Px, Py, Ex, Ey,
or

Px =
P+ + P−

2
=
ε0

2
(χ+E+ + χ−E−) =

ε0

2
[χ+(Ex + jEy) + χ−(Ex − jEy)]

=
ε0

2
[(χ+ + χ−)Ex + j(χ+ − χ−)Ey]

(1.14)

Py =
P+ − P−

2j
=
ε0

2j
(χ+E+ − χ−E−) =

ε0

2j
[χ+(Ex + jEy)− χ−(Ex − jEy)]

=
ε0

2j
[(χ+ − χ−)Ex + j(χ+ + χ−)Ey]

(1.15)

The above relationship has to be expressed using a tensor where

P = ε0χχχ ·E (1.16)

where P = [Px, Py], and E = [Ex, Ey]. From the above, χ is of the form

χ =
1

2

(
(χ+ + χ−) j(χ+ − χ−)
−j(χ+ − χ−) (χ+ + χ−)

)
=

(
− ωp

2

ω2−Ω2 −j ωp
2Ω

ω(ω2−Ω2)

j
ωp

2Ω
ω(ω2−Ω2) − ωp

2

ω2−Ω2

)
(1.17)

Notice that in the above, when the B is turned off or Ω = 0, the above resembles
the solution of a collisionless, cold plasma.

For the electric field in the z direction, it is unaffected by the magnetic field
as can be seen from the Lorentz force law or (1.1). Hence, it behaves like a

1This is also called the gyrofrequency.
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simple collisionless plasma without a biasing magnetic field. Consequently, the
above can be generalized to 3D to give

χ =

 χ0 jχ1 0
−jχ1 χ0 0

0 0 χp

 (1.18)

where χp = −ω2
p/ω

2.

Using the fact that D = ε0E + P = ε0(I + χ) ·E = ε ·E, the above implies
that

ε = ε0

1 + χ0 jχ1 0
−jχ1 1 + χ0 0

0 0 1 + χp

 (1.19)

Please notice that the above tensor is a hermitian tensor. We shall learn later
that this is the hallmark of a lossless medium.

Another characteristic of a gyrotropic medium is that a linearly polarized
wave will rotate when passing through it. This is the Faraday rotation ef-
fect, which we shall learn later. This phenomenon poses a severe problem to
Earth-to-satellite communication using linearly polarized wave as it requires the
alignment of the Earth-to-satellite antennas. This can be avoided using a ro-
tatingly polarized wave, called a circularly polarized wave that we shall learn in
the next section.

2 Wave Polarization

Studying wave polarization is very important for communication purposes. A
wave whose electric field is pointing in the x direction while propagating in the
z direction is a linearly polarized (LP) wave. The same can be said of one with
electric field polarized in the y direction. It turns out that a linearly polarized
wave suffers from Faraday rotation when it propagates through the ionosphere.
For instance, an x polarized wave can become a y polarized due to Faraday
rotation. So its polarization becomes ambiguous: to overcome this, Earth to
satellite communication is done with circularly polarized (CP) waves. So even
if the electric field vector is rotated by Faraday’s rotation, it remains to be a
CP wave. We will study these polarized waves next.

We can write a general uniform plane wave propagating in the z direction
as

E = x̂Ex(z, t) + ŷEy(z, t) (2.1)

Clearly, ∇·E = 0, and Ex(z, t) and Ey(z, t) are solutions to the one-dimensional
wave equation. For a time harmonic field, the two components may not be in
phase, and we have in general

Ex(z, t) = E1 cos(ωt− βz) (2.2)

Ey(z, t) = E2 cos(ωt− βz + α) (2.3)
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where α denotes the phase difference between these two waves components. We
shall study how the linear superposition of these two components behaves for
different α’s. First, we set z = 0 to observe this field. Then

E = x̂E1 cos(ωt) + ŷE2 cos(ωt+ α) (2.4)

For α = π
2

Ex = E1 cos(ωt), Ey = Ez cos(ωt+ π/2) (2.5)

Next, we evaluate the above for different ωt’s

ωt = 0, Ex = E1, Ey = 0 (2.6)

ωt = π/4, Ex = E1/
√

2, Ey = −E2/
√

2 (2.7)

ωt = π/2, Ex = 0, Ey = −E2 (2.8)

ωt = 3π/4, Ex = −E1/
√

2, Ey = −E2/
√

2 (2.9)

ωt = π, Ex = −E1, Ey = 0 (2.10)

The tip of the vector field E traces out an ellipse as show in Figure 1. With the
thumb pointing in the z direction, and the wave rotating in the direction of the
fingers, such a wave is called left-hand elliptically polarized (LHEP) wave.

Figure 1:

When E1 = E2, the ellipse becomes a circle, and we have a left-hand cir-
cularly polarized (LHCP) wave. When α = −π/2, the wave rotates in the
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counter-clockwise direction, and the wave is either right-hand elliptically po-
larized (RHEP), or right-hand circularly polarized (RHCP) wave depending on
the ratio of E1/E2. Figure 2 shows the different polarizations of the wave wave
for different phase differences and amplitude ratio.

Figure 2: In this figure, ψ = −α in our notes, and A = E2/E1 (Courtesy of J.A.
Kong, Electromagnetic Wave Theory).

Figure 3 shows a graphic picture of a CP wave propagating through space.
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Figure 3: Courtesy of Wikipedia.

2.1 Arbitrary Polarization Case and Axial Ratio

The axial ratio (AR) is an important figure of merit for designing CP antennas
(antennas that will radiate CP waves). The closer is this ratio to 1, the better
the antenna design. We will discuss the general polarization and the axial ratio
of a wave.

For the general case for arbitrary α, we let

Ex = E1 cosωt, Ey = E2 cos(ωt+ α) = E2(cosωt cosα− sinωt sinα) (2.11)

Then from the above, expressing Ey in terms of Ex, one gets

Ey =
E2

E1
Ex cosα− E2

[
1−

(
Ex
E1

)2
]1/2

sinα (2.12)

Rearranging and squaring, we get

aEx
2 − bEx2Ey

2 + cEy
2 = 1 (2.13)

where

a =
1

E1
2 sin2 α

, b =
2 cosα

E1E2 sinα
, c =

1

E2
2 sin2 α

(2.14)

After letting Ex → x, and Ey → y, equation (2.13) is of the form,

ax2 − bxy + cy2 = 1 (2.15)

The equation of an ellipse in its self coordinates is(
x′

A

)2

+

(
y′

B

)2

= 1 (2.16)
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where A and B are axes of the ellipse as shown in Figure 4. We can transform
the above back to the (x, y) coordinates by letting

x′ = x cos θ − y sin θ (2.17)

y′ = x sin θ + y cos θ (2.18)

to get

x2

(
cos2 θ

A2
+

sin2 θ

B2

)
− xy sin 2θ

(
1

A2
− 1

B2

)
+ y2

(
sin2 θ

A2
+

cos2 θ

B2

)
= 1

(2.19)

Comparing (2.13) and (2.19), one gets

θ =
1

2
tan−1

(
2 cosαE1E2

E2
2 − E1

2

)
(2.20)

AR =

(
1 + ∆

1−∆

)1/2

> 1 (2.21)

where AR is the axial ratio where

∆ =

(
1− 4E1

2E2
2 sin2 α(

E1
2 + E2

2
)2
)1/2

(2.22)

Figure 4:
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3 Polarization and Power Flow

For a linearly polarized wave,

E = x̂E0 cos(ωt− βz), H = ŷ
E0

η
cos(ωt− βz) (3.1)

Hence, the instantaneous power becomes

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) (3.2)

indicating that for a linearly polarized wave, the instantaneous power is function
of both time and space. It travels as lumps of energy through space. In the
above E0 is the amplitude of the linearly polarized wave.

Next, we look at power flow for for elliptically and circularly polarize waves.
It is to be noted that in the phasor world or frequency domain, (2.1) becomes

E(z, ω) = x̂E1e
−jβz + ŷE2e

−jβz+jα (3.3)

For LHEP,

E(z, ω) = e−jβz(x̂E1 + jŷE2) (3.4)

whereas for LHCP

E(z, ω) = e−jβzE1(x̂+ jŷ) (3.5)

For RHEP, the above becomes

E(z, ω) = e−jβz(x̂E1 − jŷE2) (3.6)

whereas for RHCP, it is

E(z, ω) = e−jβzE1(x̂− jŷ) (3.7)

Focussing on the circularly polarized wave,

E = (x̂± jŷ)E0e
−jβz (3.8)

Using that

H =
β ×E

ωµ
,

then

H = (∓x̂− jŷ)j
E0

η
e−jβz (3.9)

Therefore,

E(t) = x̂E0 cos(ωt− βz)± ŷE0 sin(ωt− βz) (3.10)

H(t) = ∓x̂E0

η
sin(ωt− βz) + ŷ

E0

η
cos(ωt− βz) (3.11)
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Then the instantaneous power becomes

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) + ẑ

E0
2

η
sin2(ωt− βz) = ẑ

E0
2

η
(3.12)

In other words, a CP wave delivers constant power independent of space and
time.

It is to be noted that the complex Poynting vector

S = E×H∗ (3.13)

are real both for linearly, circularly, and elliptically polarized waves. This is
because there is no reactive power in a plane wave of any polarization: the
stored energy in the plane wave cannot be returned to the source!
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